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Triangle Surfaces with Discrete Equivalence Classes
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Figure 1: An architectural rendering of a four-point tensile surface whose original shape contained 3200 unique triangles optimized to 10
unique polygons (only 0.3% of the total polygons) using our method. Left shows a close-up of the tessellation of the surface.

Abstract

We propose a technique that takes a triangulated surface as input
and outputs a surface with the same topology but altered geome-
try such that each polygon falls into a set of discrete equivalence
classes. We begin by describing an error function that measures
how close the polygons are to satisfying this criteria. To optimize
this error function, we first cluster triangles into discrete sets such
that the assignment of sets minimizes our error. We then find canon-
ical polygons for each set using nonlinear optimization. Next, we
solve a Poisson equation to find positions of vertices such that the
surface polygons match the canonical polygons as close as possi-
ble. We also describe how to incorporate a fairness criteria into
the optimization to avoid oscillations of the surface. We iterate this
entire process until we reach a user specified tolerance, possibly
adding clusters during iteration to guarantee convergence. We have
been able to successfully reduce the number of unique triangles to
lie within a small percentage of the total number of triangles in the
surface and demonstrate our technique on various examples.
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1 Introduction

Modeling freeform shapes has many uses such as representing char-
acters in digital movies, modeling the body of a car for manufac-
turing purposes, or depicting the shape of a building for architec-
tural applications. The last application, architectural modeling, has
seen much work recently in applying optimization to enforce var-
ious geometric properties that can aid in the practical construction
of these shapes. For example, creating shapes with planar quad
meshes [Liu et al. 2006; Cutler and Whiting 2007], constructing
offset meshes for beam layout [Pottmann et al. 2007], modeling
shapes with curved panels [Pottmann et al. 2008] and tiling surfaces
with circles [Schiftner et al. 2009] have all been studied recently.

However, one problem that has been overlooked thus far is that the
pieces that make up these shapes require a great deal of customiza-
tion. For example, when modeling a freeform building from tri-
angles or planar quad panels, it is very likely that each individual
polygon is unique when compared to the other polygons. In terms
of manufacturing, this uniqueness ignores economies of scale and
requires each piece to be custom manufactured.

An alternative solution is to somehow model the shape with pan-
els that fall into a small number of discrete sets. In this case, there
are only a small number of unique panels with many of each indi-
vidual panel type used to tile the surface. Such an approach was
recently used in the construction of the Beijing National Aquatic
Center where the originally proposed surface consisted of a very
high number of unique shapes. In order to simplify the construction
process, 4000 panels were reduced to a small number of sets [Drew
2008, p. 190]. However, this example was simple in that the walls
and roof were planar. We wish to automate this reduction process
and apply it to arbitrary freeform shapes.

2 Background

2D periodic or aperiodic tilings of the plane have been well stud-
ied [Grünbaum and Shephard 1986]. However, freeform shapes
that may possess arbitrary curvature are substantially more difficult
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Figure 2: The effect of cluster numbers on optimization. Each figure shows the mapping of clusters to polygons and show the canonical
polygon for that cluster mapped onto the surface. The first two rows show the effect of only using clustering. The bottom two rows show the
effect of global optimization on the vertex positions.

to tile. To our knowledge, the problem of modeling 3D freeform
shapes with discrete sets has not been addressed previously. How-
ever, we briefly discuss other similar work such as mosaic tiling i.e.
repeated tiling of a small number of shapes covering a given space.

Mosaics attempt to cover space with a set of tiles, possibly leaving
gaps in between the tiles. A prominent contribution for generat-
ing mosaic in 2D was done by Kim and Pellacini [Kim and Pel-
lacini 2002], where a set of image tiles of arbitrary shape were used
to recreate an given image. The tiles would fit the image nearly
perfectly, leaving negligible space in between the tiles. Elber and
Wolberg [Elber and Wolberg 2003] improved upon the idea by ex-
tracting free-form curves in an image and placing tiles along these
curves. More recent work [Pavic et al. 2009] takes a multiresolution
approach to the problem.

The concept of using tiles was extended to 3D by Lai et al. [Lai
et al. 2006]. In this case, the authors place equal-sized quadri-
lateral tiles on the surface, oriented along the curvature lines. To
place the tiles, they minimize a spring-like energy over the entire
surface. Even though this method covers the entire surface with a
single sized quad, the spacing between the tiles is significant and
filled with grout, which makes this technique unsuitable for build-
ing construction purposes.

Recently, Passos and Walter [Dos Passos and Walter 2008] adapted
this method to include variable sized tiles and achieved much larger
coverage. This method places a number of user defined tiles on the
surface based on curvature with larger number of tiles in regions
of high curvature. The simulation then uses a relaxation procedure
to move tiles away from each other leaving gap for grout. Even

though this method improves upon the prior work, it may still fall
short of the expectations in construction where the spacing between
tiles must fall within a small tolerance.

In contrast to these mosaic methods, we do not allow the user to
specify the tiles of the surface, but instead find the canonical poly-
gons corresponding to each equivalence class through optimization.
While 3D mosaics have been designed to have gaps between the
tiles filled with grout, we aim to reduce the spacing between canon-
ical polygons far below that used in these methods.

Fu et al. [2010] and Eigensatz et al. [2010] developed methods to
approximate surfaces with discrete types of objects in parallel to
our paper. Eigensatz et al. [2010] do not try to use small num-
bers of congruent shapes to represent a surface but address a related
problem of what types of surfaces to use to minimize construction
costs. Fu et al. [2010] also address a similar problem to ours except
they use non-planar quadrilateral surfaces.

3 Discrete Equivalence Classes

We will assume that we are given a triangulated surface with or
without boundary as input as well as an initial number of clusters n
and a tolerance ǫ that we would like to converge to measured as a
percentage of the bounding box diagonal of the shape. Our goal is
to modify the geometry of the triangles such that we maintain the
appearance of the input surface while having all of the triangles fall
into one of the n equivalence classes.

We begin by defining a notion of similarity between two triangles,
which will allow us to construct our equivalence classes. Given two
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Figure 3: A curved roof structure with 576 triangles, which was
reduced down to 6 unique clusters with our method.

triangles A,B with vertices a1, a2, a3 and b1, b2, b3 we measure
the distance between triangles by considering rigid transformations
of the two polygons under all possible correspondences of their ver-
tices. Hence, their distance is

D(A,B) = min
RT R=I,T,j

3
∑

ℓ=1

∣

∣Rbperm(j,ℓ) + T − aℓ

∣

∣

2
(1)

where R, T represent a rigid transformation and perm(j, ℓ) repre-

sents the ℓth element of the jth permutation of the indices {1, 2, 3}.
There are six of these permutations and they alter the correspon-
dence between the vertices of A and B to find the best match be-
tween the vertices of the triangle. We allow the orientation of the
vertices of B to change and therefore consider reflections as well as
rotations to find the best correspondence between the two polygons.
We should note that Fu et al. [2010] developed an identical metric
in parallel to our work but for quads rather than triangles.

To find the best rigid transformation between the two polygons, we
use the method of [Arun et al. 1987]. The translation is given by

T = B̄ −RĀ

where Ā, B̄ represent the centroids of the two polygons. Now, let
a∗
ℓ = aℓ − ā, b∗ℓ = bℓ − b̄, and define M to be

M =

3
∑

ℓ=1

a
∗
ℓ (b

∗
ℓ )

T
.

R is then given by R = UV T where M = UΣV T is the singular
value decomposition of M . If det(R) < 0, we simply negate the
vector in V corresponding to the smallest singular value.

This distance function is symmetric in A, B and has the property
that if two triangles are a rotation or reflection of each other, then
their distance will be zero. This metric makes sense for applica-
tions where we construct surfaces out of unoriented panels such
as glass. However, if panels must be oriented (inside vs. outside
faces), then we could easily incorporate this restriction by reducing
the permutations in perm(j, ℓ) to the three oriented permutations
of the vertices.

Without rotation 10% rotation

50% rotation 100% rotation

Figure 4: Example of an optimized mesh showing the effect of ro-
tating canonical triangles towards the normal of the closest point
on the surface. Notice how even a small amount of rotation can fix
most of the artifacts cause by surface oscillation.

3.1 Clustering

In order to transform an existing triangulated mesh into a small fi-
nite set of representative triangles, we partition the triangles in the
surface into a set of discrete clusters. For each cluster we will build
a representative polygon that we refer to as the canonical polygon.
This stage of the optimization seeks to minimize the following func-
tion

min
Cj ,ind

∑

i

D(Pi, Cind(i)) (2)

where Cj is the canonical polygon for the jth cluster and ind(i)
gives the cluster to which the polygon Pi is assigned.

A commonly used algorithm to optimize functions of the form of
Equation 2 is k-means clustering or some variant thereof [Arthur
and Vassilvitskii 2007]. This clustering is performed in an alternat-
ing fashion. First we assume the Cj are fixed and optimize ind by
assigning the Pi to the closest canonical polygon as measured by
the distance function D(Pi, Cj). Then we assume ind is fixed to
optimize for Cj .

Since the distance function in Equation 1 is very nonlinear, find-
ing the canonical polygon Cj may be difficult. Given an assign-
ment ind of the polygons to clusters, we perform a nonlinear
optimization of Equation 2 using the Levenberg-Marquardt algo-
rithm [Frandsen et al. 2004]. We note that a 3D triangle under the
class of orthogonal transformations does not have nine degrees of
freedom, but only three. There are many ways of representing these
three degrees of freedom in terms of lengths and angles of the tri-
angle. We choose a simple representation of the vertices of Cj as

Cj,1 = (0, 0, 0)
Cj,2 = (x2, 0, 0)
Cj,3 = (x3, y3, 0).
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Figure 5: 5 Point Tensile Membrane with 1280 triangles optimized
with 10 clusters. The canonical polygons found by the optimization
are shown on the right.

Hence, we need only optimize for the variables x2, x3, y3, which
greatly reduces the size of the optimization problem and leads to
fast convergence.

While k-means clustering typically begins with random seeds, we
use the variant proposed by [Wang et al. 2009] as the result is de-
terministic and tends to produce better results. We begin our op-
timization with a single cluster and run the k-means clustering to
convergence. We then iteratively add a new cluster corresponding
to the polygon with the worst error in the summation from Equa-
tion 1 and repeat this process until n clusters have been added.

Figure 2 (top) illustrates clustering with an example of a sim-
ple bean shaped surface and is clustered using varying number of
clusters. For each figure we show the canonical polygon Cind(i)

mapped onto the polygon Pi using the best rigid transformation
and vertex correspondence from Equation 1. We denote this trans-

formed polygon by Ĉind(i). With higher numbers of clusters, the
gaps and overlaps in the surface diminish even though these results
lack the position optimization performed in Section 3.2, which im-
prove the results significantly (see the lower part of the figure).

3.2 Global Optimization

So far we have attempted to minimize the error in Equation 2 by
clustering similar triangles and replacing them with a best fit canon-
ical polygon. However, this process does not guarantee a perfectly
aligned mesh with canonical polygons mapped in place of the poly-
gons of the mesh (as evident in Figure 2). Though clustering can
trivially reduce the error in Equation 2 to zero by assigning each
polygon to its own cluster, we aim to do so using only a small num-
ber of clusters.

Given assignment of triangles to clusters and the transformed

canonical polygons Ĉind(i), we must find a surface whose poly-
gons match the canonical polygons. Yu et al. [2004] considered
a very similar problem in the context of mesh deformation, which
was solved using the Poisson equation. Similarly, we solve a Pois-
son equation to find the new positions of the vertices to match our
canonical polygons. The Poisson equation attempts to find vertex
positions for the shape P such that

Eg =
∑

i

∣

∣

∣
∇Pi −∇Ĉind(i)

∣

∣

∣

2

∆i

is minimized where ∇Pi is the gradient of the triangle Pi and ∆i

is the area of Pi.

To avoid the trivial global optimum of all zeros and to maintain
the shape of the initial surface, we also add a closeness term to the

Figure 6: A complex shape of a bunny with 1724 polygons opti-
mized using 42 clusters with the clusters drawn as different colors.
The initial shape of the object before optimization is shown on the
left.

Poisson optimization. For each polygon Pi of the current surface,
we find the closest point and normal (xi, ni) on the initial shape
P 0 to Pi’s centroid P̄i and define this error as the distance squared
to the tangent planed formed by (xi, ni).

Ec =
∑

i

(

ni · (P̄i − xi)
)2

By minimizing the distance to the tangent planes, we allow poly-
gons to slide along the surface in nearly planar regions to fit the
canonical polygons better while still maintaining the shape of the
initial surface P 0.

For surfaces with boundary, we also add another term that measures
the deviation of the vertices on the boundary of the current surface
P compared with the initial shape P 0. If pℓ is a vertex on the
boundary of P and y1, y2 are vertices on the boundary of P 0 such
that their edge is the closest to pℓ, then the error is given by

Eb =
∑

ℓ

∣

∣

∣

∣

pℓ −
(pℓ − y1) · (y2 − y1)

|y2 − y1|2
(y2 − y1)

∣

∣

∣

∣

2

where this summation is over all the boundary vertices of P .

We use these three error functions in our global optimization and
minimize

min
P

Eg + αEc + βEb

where α and β begin at a small constants (we use 0.001 and 0.01)
and decrease with each iteration of the optimization. This error
function is quadratic and its minimum is given by the solution of a
sparse system of linear equations. After solving for new positions
for the vertices of P using this linear system, we then iterate the
entire process by reclustering, finding new canonical polygons and
solving the global optimization again until the process converges.

Unfortunately, simply incorporating these closeness terms into the
optimization does not maintain the shape of the surface, though
they do prevent the optimized surface from drifting too far from
the original shape. Figure 4 (top left) shows the result of using
this closeness metric. The optimization can quickly push polygons
away from the original shape and the optimized surface may take on
a jagged appearance. This optimized shape is geometrically close
to the original shape, yet the normals of the shape are far from that
of the original surface.

Ideally, we would like both the geometry and the normals of the
optimized surface to match that of the original shape. We provide
a simple method for doing so by modifying the orientation of each
of the transformed canonical polygons before solving the Poisson

46:4       •       M. Singh et al.

ACM Transactions on Graphics, Vol. 29, No. 4, Article 46, Publication date: July 2010.



Tris Clusters Mean Error

Fig 1 3200 10 0.014%

Fig 3 576 6 0.033%

Fig 5 1280 10 0.029%

Fig 6 1724 44 0.051%

Fig 7 2492 64 0.026%

Fig 9 top lhs 1396 84 0.055%

Fig 9 mid rhs 676 19 0.023%

Fig 9 btm lhs 1800 31 0.008%

Fig 9 btm rhs 2880 58 0.012%

Table 1: The number of clusters and error for various models. The
error is of the form mean error in terms of a percentage of the length
of the bounding box diagonal from the initial shape.

equation. Let ni be the normal of the closest point on P 0 to P̄i and
let mi be the normal of Pi. We then rotate the transformed canoni-
cal polygon Ĉind(i) about the axis mi×ni by a small amount prior
to solving the Poisson equation. Figure 4 shows the effect of ro-
tating by 10% θi degrees (top right) where θi is the angle between
mi and ni, 50% θi (bottom left) and θi (bottom right). Notice that
even modifying the orientation of the canonical polygons slightly
is enough to greatly improved the quality of the optimized surface.
For our optimizations, we use 10% θi as the rotation amount since
large amounts of rotation negatively affect the error in the optimiza-
tion and require more clusters to obtain the same error tolerance.

4 Discussion and Results

Our optimization iterates through clustering/finding canonical poly-
gons and global optimization to reduce the error in Equation 2. If
at any point during the optimization the maximal distance between
vertices of the optimized mesh and the transformed canonical poly-
gons is less than the user specified tolerance ǫ we terminate the op-
timization. As seen in Figure 8 the error drops dramatically as the
optimization proceeds and gradually levels off. If the optimization
does not achieve the specified tolerance, we simply insert another
cluster corresponding to the polygon with the worst error in the
summation in Equation 2 and continue the optimization. Hence, if
ǫ is set very low, then a large number of clusters may be required
to achieve this tolerance depending on the shape of the object. We
summarize the results for many of our shapes in Table 1.

In terms of time, our optimization requires n nonlinear optimiza-
tions per iteration to find the canonical polygons each of which may
be repeated several times in the k-means clustering until the assign-
ments in ind converge. Furthermore, we also solve a global system
of equations in each iteration. Hence, our optimization is not fast.
However, we would like to emphasize that this optimization is only
designed to be run as a post-processing step in the modeling pro-
cess. As an example, the shape in Figure 8 contains 1792 poly-
gons and we optimized to 17 clusters. Initial clustering takes 499
seconds and each step of the optimization (reclustering and global
optimization) takes about 9 seconds on an Intel Core 2 6700. A
typical optimization may run for hundreds or even a few thousand
iterations, though this amount is strongly dependent on ǫ.

Figures 1, 2, 3, 4, 6, 7 and 9 show examples of shapes that we have
run our optimization on. In all of these examples, we show the

transformed canonical polygons Ĉind(i) instead of the optimized
polygonal surface P so that any gaps/overlaps are visible; though
the error tolerance is set low enough that these discrepancies are
not visible. Figure 5 shows an example of our optimization run
on a tensile structure where the clustering is depicted by different
color polygons. This shape has 1280 triangles and we use only 10

Figure 7: A high genus shape with 2492 polygons. The initial
shape is shown on the left and the optimized shape with 64 clusters
is shown on the right.

canonical polygons, shown on the right of the image. We terminate
our optimization based on the maximal error, the average error for
these shapes is typically far lower. For example, the mean error is
only 0.029% of the length of the bounding box diagonal.

For complex shapes such as Figures 6 and 7, more clusters are
typically required to achieve low error tolerances. Even though
the number of clusters may be higher than for other shapes, the
total number of clusters is still only a small fraction of the total
number of polygons (about 2.4% in the case of Figure 6). Fur-
thermore, closed shapes tend to be more difficult than shapes with
boundaries to optimize as well. Closed shapes with zero error must
satisfy a global constraint implied by the Gauss-Bonnet theorem,
which states that the integral of curvature for closed shapes is a
constant dependent on the genus of the surface. When boundaries
are present, the surface has more degrees of freedom to shrink or
expand even when we add an error term to maintain the shape of
the boundary during optimization.

The initial number of clusters n the user specifies also has an effect
on the result of the optimization. If we start with a single cluster,
run the optimization to convergence and repeat by adding a cluster
each time up to n clusters, we tend to achieve a lower error than
simply beginning the optimization with n clusters. Figure 8 shows
the difference between these two approaches as well as a plot of the
error from Equation 2 during optimization. If we begin the opti-
mization with a single cluster, the initial error is much higher than
if we start with n. However, if we begin with n clusters, the error
converges quickly. In contrast, if we begin with a single cluster and
incrementally add clusters during optimization, we often achieve a
lower total error after reaching n clusters. The disadvantage of in-
crementally adding clusters is that the canonical polygons will be
very similar to one another. This effect can be seen in the optimized
shapes in Figure 8 where the polygons are more uniform in shape.

5 Future Work

While our optimization works well, there are some areas that we
would like to improve in the future. Outliers may be a problem
for our optimization where the clusters are relatively tight except
for a few triangles of the surface. By identifying and removing
these outliers from the optimization we may be able to use fewer
repeatable clusters at the cost of having a small percentage of the
polygons as custom shapes.

Our method is also very dependent on the topology of the shape
and we currently assume that the topology is fixed. Different tri-
angulations of the same or similar shapes may produce different
results in terms of the final error and number of clusters. We may
be able to improve our optimization by allowing small changes to
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Figure 8: Example of different clustering methods. Top Left: the
shape is partitioned into 17 clusters before running global opti-
mization. Top Right: the same shape starting with 1 cluster and
incrementally adding clusters and running the optimization to con-
vergence each time a cluster is added up to 17 clusters. Bottom:
the error graph for the two optimizations (blue is for left shape, red
is for right shape).

the topology of the shape such as edge flips. However, this strat-
egy would need to take into account the shape of the initial object
as well as its normals since the local curvature of the object may
change significantly after such an edge flip.

Finally, we would like to incorporate n-gons into our optimization
instead of simply restricting ourselves to triangles though doing so
may be complex. In terms of practical construction, these n-gons
will typically need to be planar surfaces [Liu et al. 2006]. The con-
straints for planar quad meshes are already non-linear and will cer-
tainly harm the convergence of our method, possibly requiring sub-
stantially more clusters.
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